Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
Biochem Pharmacol ; 223: 116194, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583812

RESUMEN

Glutathione peroxidase 4 (GPX4) is a promising anticancer therapeutic target; however, the application of GPX4 inhibitors (GPX4i) is limited owing to intrinsic or acquired drug resistance. Hence, understanding the mechanisms underlying drug resistance and discovering molecules that can overcome drug resistance are crucial. Herein, we demonstrated that GPX4i killed bladder cancer cells by inducing lipid reactive oxygen species-mediated ferroptosis and apoptosis, and cisplatin-resistant bladder cancer cells were also resistant to GPX4i, representing a higher half-maximal inhibitory concentration value than that of parent bladder cancer cells. In addition, thioredoxin reductase 1 (TrxR1) overexpression was responsible for GPX4i resistance in cisplatin-resistant bladder cancer cells, and inhibiting TrxR1 restored the sensitivity of these cells to GPX4i. In vitro and in vivo studies revealed that Jolkinolide B (JB), a natural diterpenoid and previously identified as a TrxR1 inhibitor, potentiated the antiproliferative efficacy of GPX4i (RSL3 and ML162) against cisplatin-resistant bladder cancer cells. Furthermore, GPX4 knockdown and inhibition could augment JB-induced paraptosis and apoptosis. Our results suggest that inhibiting TrxR1 can effectively improve GPX4 inhibition-based anticancer therapy. A combination of JB and GPX4i, which is well-tolerated and has several anticancer mechanisms, may serve as a promising therapy for treating bladder cancer.


Asunto(s)
Compuestos de Anilina , Diterpenos , Tiofenos , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Tiorredoxina Reductasa 1 , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
2.
Biomed Pharmacother ; 174: 116507, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565059

RESUMEN

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Auranofina , Neoplasias del Colon , Sinergismo Farmacológico , Compuestos Heterocíclicos con 3 Anillos , Proteínas Proto-Oncogénicas c-akt , Pironas , Especies Reactivas de Oxígeno , Transducción de Señal , Tiorredoxina Reductasa 1 , Humanos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Neoplasias del Colon/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Tiorredoxina Reductasa 1/antagonistas & inhibidores , Auranofina/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Línea Celular Tumoral , Fosforilación/efectos de los fármacos , Morfolinas/farmacología , Células HCT116
3.
Phytomedicine ; 128: 155317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537439

RESUMEN

BACKGROUND: Sorafenib (Sora), a multi-target tyrosine kinase inhibitor, is widely recognized as a standard chemotherapy treatment for advanced hepatocellular carcinoma (HCC). However, drug resistance mechanisms hinder its anticancer efficacy. Derived from Withania somnifera, Withaferin A (WA) exhibits remarkable anti-tumor properties as a natural bioactive compound. This study aimed to examine the mechanisms that underlie the impacts of Sora and WA co-treatment on HCC. METHODS: Cell proliferation was evaluated through colony formation and MTT assays. Flow cytometry was employed to determine cellular apoptosis and reactive oxygen species (ROS) levels. The evaluation of apoptosis-related protein levels, DNA damage, and endoplasmic reticulum stress was conducte utilizing IHC staining and western blotting. Moreover, the caspase inhibitor Z-VAD-FMK, ATF4 siRNA, ROS scavenger N-acetyl cysteine (NAC), and TrxR1 shRNA were used to elucidate the underlying signaling pathways. To validate the antitumor effects of Sora/WA co-treatment, in vivo experiments were ultimately executed using Huh7 xenografts. RESULTS: Sora/WA co-treatment demonstrated significant synergistic antitumor impacts both in vivo and in vitro. Mechanistically, the enhanced antitumor impact of Sora by WA was achieved through the inhibition of TrxR1 activity, resulting in ROS accumulation. Moreover, ROS generation induced the activation of DNA damage and endoplasmic reticulum (ER) stress pathways, eventually triggering cellular apoptosis. Pre-treatment with the antioxidant NAC significantly inhibited ROS generation, ER stress, DNA damage, and apoptosis induced by Sora/WA co-treatment. Additionally, the inhibition of ATF4 by small interfering RNA (siRNA) attenuated Sora/WA co-treatment-induced apoptosis. In vivo, Sora/WA co-treatment significantly suppressed tumor growth in HCC xenograft models and decreased TrxR1 activity in tumor tissues. CONCLUSION: Our study suggests that WA synergistically enhances the antitumor effect of Sora, offering promising implications for evolving treatment approaches for HCC.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Daño del ADN , Sinergismo Farmacológico , Estrés del Retículo Endoplásmico , Neoplasias Hepáticas , Ratones Desnudos , Especies Reactivas de Oxígeno , Sorafenib , Witanólidos , Witanólidos/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Animales , Daño del ADN/efectos de los fármacos , Sorafenib/farmacología , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Tiorredoxina Reductasa 1/metabolismo , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Factor de Transcripción Activador 4/metabolismo
4.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164168

RESUMEN

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Asunto(s)
Neoplasias Pulmonares , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Auranofina/farmacología , Auranofina/uso terapéutico , Apoptosis , Línea Celular Tumoral , Muerte Celular
5.
Redox Biol ; 70: 103050, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38277963

RESUMEN

Thioredoxin reductase (TXNRD) is a selenoprotein that plays a crucial role in cellular antioxidant defense. Previously, a distinctive guiding bar motif was identified in TXNRD1, which influences the transfer of electrons. In this study, utilizing single amino acid substitution and Excitation-Emission Matrix (EEM) fluorescence spectrum analysis, we discovered that the guiding bar communicates with the FAD and modulates the electron flow of the enzyme. Differential Scanning Fluorimetry (DSF) analysis demonstrated that the aromatic amino acid in guiding bar is a stabilizer for TXNRD1. Kinetic analysis revealed that the guiding bar is vital for the disulfide reductase activity but hinders the selenocysteine-independent reduction activity of TXNRD1. Meanwhile, the guiding bar shields the selenocysteine residue of TXNRD1 from the attack of electrophilic reagents. We also found that the inhibition of TXNRD1 by caveolin-1 scaffolding domain (CSD) peptides and compound LCS3 did not bind to the guiding bar motif. In summary, the obtained results highlight new aspects of the guiding bar that restrict the flexibility of the C-terminal redox motif and govern the transition from antioxidant to pro-oxidant.


Asunto(s)
Tiorredoxina Reductasa 1 , Antioxidantes/metabolismo , Cinética , Oxidación-Reducción , Selenocisteína/metabolismo , Tiorredoxina Reductasa 1/química , Tiorredoxina Reductasa 1/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Humanos
6.
Nat Aging ; 4(2): 185-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38267705

RESUMEN

Sterile inflammation, also known as 'inflammaging', is a hallmark of tissue aging. Cellular senescence contributes to tissue aging, in part, through the secretion of proinflammatory factors collectively known as the senescence-associated secretory phenotype (SASP). The genetic variability of thioredoxin reductase 1 (TXNRD1) is associated with aging and age-associated phenotypes such as late-life survival, activity of daily living and physical performance in old age. TXNRD1's role in regulating tissue aging has been attributed to its enzymatic role in cellular redox regulation. Here, we show that TXNRD1 drives the SASP and inflammaging through the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) innate immune response pathway independently of its enzymatic activity. TXNRD1 localizes to cytoplasmic chromatin fragments and interacts with cGAS in a senescence-status-dependent manner, which is necessary for the SASP. TXNRD1 enhances the enzymatic activity of cGAS. TXNRD1 is required for both the tumor-promoting and immune surveillance functions of senescent cells, which are mediated by the SASP in vivo in mouse models. Treatment of aged mice with a TXNRD1 inhibitor that disrupts its interaction with cGAS, but not with an inhibitor of its enzymatic activity alone, downregulated markers of inflammaging in several tissues. In summary, our results show that TXNRD1 promotes the SASP through the innate immune response, with implications for inflammaging. This suggests that the TXNRD1-cGAS interaction is a relevant target for selectively suppressing inflammaging.


Asunto(s)
Transducción de Señal , Tiorredoxina Reductasa 1 , Animales , Ratones , Senescencia Celular/genética , Inmunidad Innata/genética , Inflamación/genética , Nucleotidiltransferasas/genética , Tiorredoxina Reductasa 1/metabolismo
7.
Mol Neurobiol ; 61(2): 1044-1060, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37676391

RESUMEN

Ferroptosis is a distinct peroxidation-driven form of cell death tightly involved in subarachnoid hemorrhage (SAH). This study delved into the mechanism of deferoxamine (DFO, an iron chelator) in SAH-induced ferroptosis and inflammation. SAH mouse models were established by endovascular perforation method and injected intraperitoneally with DFO, or intraventricularly injected with the Nrf2 pathway inhibitor ML385 before SAH, followed by detection of neurological function, blood-brain barrier (BBB) permeability, and brain water content. Apoptotic level of hippocampal neurons, symbolic changes of ferroptosis, and levels of pro-inflammatory cytokines were assessed using TUNEL staining, Western blotting, colorimetry, and ELISA. The localization and expression of nuclear factor-erythroid 2-related factor 2 (Nrf2) were detected. HT22 cells were exposed to Hemin as in vitro SAH models and treated with FIN56 to induce ferroptosis, followed by evaluation of the effects of DFO on FIN56-treated HT22 cells. The regulation of Nrf2 in thioredoxin reductase 1 (TXNRD1) was analyzed by co-immunoprecipitation and Western blotting. Moreover, HT22 cells were treated with DFO and ML385 to identify the role of DFO in the Nrf2/TXNRD1 axis. DFO extenuated brain injury, and ferroptosis and inflammation in hippocampal neurons of SAH mice. Nrf2 localized at the CA1 region of hippocampal neurons, and DFO stimulated nuclear translocation of Nrf2 protein in hippocampal neurons of SAH mice. Additionally, DFO inhibited ferroptosis and inflammatory responses in FIN56-induced HT22 cells. Nrf2 positively regulated TXNRD1 protein expression. Indeed, DFO alleviated FIN56-induced ferroptosis and inflammation via activation of the Nrf2/TXNRD1 axis. DFO alleviated neurological deficits, BBB disruption, brain edema, and brain injury in mice after SAH by inhibiting hippocampal neuron ferroptosis via the Nrf2/TXNRD1 axis. DFO ameliorates SAH-induced ferroptosis and inflammatory responses in hippocampal neurons by activating the Nrf2/TXNRD1 axis.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Hemorragia Subaracnoidea , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Factor 2 Relacionado con NF-E2/metabolismo , Deferoxamina , Tiorredoxina Reductasa 1/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/tratamiento farmacológico , Hemorragia Subaracnoidea/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Inflamación/tratamiento farmacológico
8.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1525-1535, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37658214

RESUMEN

Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy. This study investigated the anticancer impacts of diffractaic and vulpinic acids, lichen secondary metabolites, on the cervical cancer HeLa cell line. XTT findings demonstrated showed that diffractaic and vulpinic acids suppressed the proliferation of HeLa cells in a dose- and time-dependent manner and IC50 values were 22.52 µg/ml and 66.53 µg/ml at 48 h, respectively. Each of these lichen metabolites significantly suppressed migration. Diffractaic acid showed an increase in both the BAX/BCL2 ratio by qPCR analysis and the apoptotic cell population via flow cytometry analysis on HeLa cells. Concerning vulpinic acid, although it decreased the BAX/BCL2 ratio in this cells, it increased apoptotic cells according to the flow cytometry analysis results. Diffractaic and vulpinic acids significantly suppressed TrxR1 enzyme activity rather than the gene and protein expression levels in HeLa cells. This research demonstrated for the first time, that targeting TrxR1 with diffractaic and vulpinic acids was an effective therapeutic strategy for treating cervical cancer.


Asunto(s)
Furanos , Fenilacetatos , Tiorredoxina Reductasa 1 , Neoplasias del Cuello Uterino , Femenino , Humanos , Células HeLa , Neoplasias del Cuello Uterino/tratamiento farmacológico , Proteína X Asociada a bcl-2 , Línea Celular Tumoral , Apoptosis
9.
Cell Death Dis ; 14(12): 819, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38086796

RESUMEN

The thioredoxin (TXN) system is an NADPH + H+/FAD redox-triggered effector that sustains homeostasis, bioenergetics, detoxifying drug networks, and cell survival in oxidative stress-related diseases. Elovanoid (ELV)-N34 is an endogenously formed lipid mediator in neural cells from omega-3 fatty acid precursors that modulate neuroinflammation and senescence gene programming when reduction-oxidation (redox) homeostasis is disrupted, enhancing cell survival. Limited proteolysis (LiP) screening of human retinal pigment epithelial (RPE) cells identified TXNRD1 isoforms 2, 3, or 5, the reductase of the TXN system, as an intracellular target of ELV-N34. TXNRD1 silencing confirmed that the ELV-N34 target was isoform 2 or 3. This lipid mediator induces TXNRD1 structure changes that modify the FAD interface domain, leading to its activity modulation. The addition of ELV-N34 decreased membrane and cytosolic TXNRD1 activity, suggesting localizations for the targeted reductase. These results show for the first time that the lipid mediator ELV-N34 directly modulates TXNRD1 activity, underling its protection in several pathologies when uncompensated oxidative stress (UOS) evolves.


Asunto(s)
Estrés Oxidativo , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/genética , Oxidación-Reducción , Isoformas de Proteínas/metabolismo , Citosol/metabolismo , Lípidos
10.
Acta Biochim Pol ; 70(4): 985-990, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060807

RESUMEN

BACKGROUND: In the present study effect of tretinoin derivative was investigated on the pathogenesis of gestational diabetes mellitus (GDM) in mice model in vivo. MATERIALS AND METHODS: Diabetes was induced in mice by injecting Streptozotocin (STZ) for 5consecutive days at a dose of 65 mg/kg body weight through the intraperitoneal route. Tretinoin derivative was given to the mice at 0.12 and 0.25 mg/kg doses through gavage in normal saline alternately for one week after STZ injection. RESULTS: The results demonstrated that tretinoin derivative administration to the diabetic mice significantly (P<0.05) alleviated the blood FBG and FINS levels. Administration of tretinoin derivative to the diabetic mice significantly (P<0.05) promoted the blood HDL level and alleviated TC and TG levels. The administration of tretinoin derivative to the diabetic mice significantly (P<0.05) alleviated the CRP, IL-6and TNF-α production in pancreatic tissues. Tretinoin derivative administration to the diabetic mice significantly (P<0.05) elevated the SOD activity, and CAT level and lowered the MDA level in pancreatic tissues. The TXNRD1 expression in diabetic mice was comparable to that in the normal group after administration of tretinoin derivativeat the dose of 0.25 mg/kg dose. In silico data demonstrated that tretinoin derivativeinteracts with TXNRD1 protein with the binding affinity ranging from -10 to 9.4 kcal/ mol. CONCLUSION: In conclusion, tretinoin derivative administration effectively regulated streptozotocin-induced changes in fasting blood glucose, insulin level, high-density lipid level and triglyceride level in diabetic mice in vivo. The streptozotocin-induced excessive production of C-reactive protein and inflammatory cytokines was also down-regulated in diabetic mice on administration of tretinoin derivative. Therefore, tretinoin derivative can be investigated further as a therapeutic agent for the treatment of gestational diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Gestacional , Ratones , Animales , Femenino , Humanos , Embarazo , Diabetes Gestacional/inducido químicamente , Diabetes Gestacional/tratamiento farmacológico , Glucemia , Estreptozocina/efectos adversos , Tretinoina/efectos adversos , Hipoglucemiantes/farmacología , Tiorredoxina Reductasa 1
11.
Neoplasma ; 70(5): 633-644, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38053374

RESUMEN

Radiotherapy is widely used as the first-line treatment for nasopharyngeal carcinoma (NPC). However, the resistance of some patients to treatment lowers its clinical effectiveness. Compared to typical epithelial cells, NPC markedly lowers the Ras-association domain family 1A (RASSF1A) protein expression. RASSF1A overexpression sensitizes NPC cells to radiotherapy. Mechanistically, RASSF1A promotes the expression of Forkhead box O3a (FoxO3a) in the nucleus and inhibits the Nuclear factor E2-related factor 2 (Nrf2) signaling pathway via binding to the Kelch-like ECH-associated protein 1 (Keap1) promoter. Through elevating intracellular ROS levels, RASSF1A overexpression inhibits the expression of thioredoxin reductase 1 (TXNRD1), a crucial Nrf2 target gene, and increases NPC sensitivity to radiation. Immunohistochemical staining of NPC tissue sections revealed that the expression of RASSF1A is negatively correlated with that of TXNRD1. The traditional Chinese medicine component andrographolide (AGP), which induces RASSF1A expression, increased the sensitivity of NPC cells to radiotherapy in vitro and in vivo. Our findings implied that RASSF1A increases the sensitivity of NPC to radiation by increasing FoxO3a expression in the nucleus, inhibiting the Nrf2/TXNRD1 signaling pathway, and elevating intracellular ROS levels. AGP targets RASSF1A and may be a promising adjuvant sensitizer for enhancing radiosensitivity in NPC.


Asunto(s)
Neoplasias Nasofaríngeas , Tiorredoxina Reductasa 1 , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2 , Neoplasias Nasofaríngeas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Tolerancia a Radiación , Línea Celular Tumoral
12.
Org Biomol Chem ; 21(48): 9630-9639, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38018884

RESUMEN

Coumarin and its derivatives have emerged as promising candidates in drug discovery. While the activity of coumarins as anticancer agents with different biological targets has been thoroughly investigated, reports on the potential of coumarins in the inhibition of thioredoxin reductase (TrxR) are still scarce. We focus on the design and synthesis of 3,4-unsubstituted coumarin analogues with systematic incorporation of substituents at the fifth to eighth positions of coumarin, which allowed definitive structure-activity relationship analysis to be conducted. In the obtained library, the substitution at the sixth position of the coumarin core with an aromatic or a cyclopropyl group turned out to be more activity enhancing. A bulky aromatic substituent with a large CF3 group encourages ligand alignment in a manner that enables covalent bond formation with the catalytic TrxR1 residue, according to the docking results. Our observations indicate that the activity of a series of coumarin analogues towards thioredoxin reductase 1 (TrxR1) is dependent on the nature (size and electronic effect) and the position of the substituent and more importantly - the accessibility of the Michael acceptor functionality. Several compounds (with at least 90% inhibition of the rat TrxR1 enzyme at 200 µM concentration) were further examined in in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines. The analogue 6-(4-(trifluoromethyl)phenyl)-2H-chromen-2-one was selected as the lead compound for further optimization. The results presented herein pave the way for the development of the next generation of coumarin-based TrxR1 inhibitors, where modification of the Michael acceptor moiety and incorporation of different aryl substituents at the sixth position of the coumarin core are planned.


Asunto(s)
Antineoplásicos , Neoplasias , Ratas , Animales , Tiorredoxina Reductasa 1/metabolismo , Antineoplásicos/química , Línea Celular , Neoplasias/tratamiento farmacológico , Cumarinas/farmacología , Cumarinas/química , Relación Estructura-Actividad
13.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003379

RESUMEN

Several cell-signaling mechanisms are activated by visible light radiation in human keratinocytes, but the key regulatory proteins involved in this specific cellular response have not yet been identified. Human keratinocytes (HaCaT cells) were exposed to blue or red light at low or high irradiance for 3 days in cycles of 12 h of light and 12 h of dark. The cell viability, apoptotic rate and cell cycle progression were analyzed in all experimental conditions. The proteomic profile, oxidative stress and mitochondrial morphology were additionally evaluated in the HaCaT cells following exposure to high-irradiance blue or red light. Low-irradiance blue or red light exposure did not show an alteration in the cell viability, cell death or cell cycle progression. High-irradiance blue or red light reduced the cell viability, induced cell death and cell cycle G2/M arrest, increased the reactive oxygen species (ROS) and altered the mitochondrial density and morphology. The proteomic profile revealed a pivotal role of Cytoplasmic thioredoxin reductase 1 (TXNRD1) and Aldo-keto reductase family 1 member C3 (AKR1C3) in the response of the HaCaT cells to high-irradiance blue or red light exposure. Blue or red light exposure affected the viability of keratinocytes, activating a specific oxidative stress response and inducing mitochondrial dysfunction. Our results can help to address the targets for the therapeutic use of light and to develop adequate preventive strategies for skin damage. This in vitro study supports further in vivo investigations of the biological effects of light on human keratinocytes.


Asunto(s)
Apoptosis , Proteómica , Humanos , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas , Apoptosis/efectos de la radiación , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Queratinocitos/metabolismo , Luz , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Tiorredoxina Reductasa 1/metabolismo
15.
Redox Biol ; 63: 102711, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37148740

RESUMEN

Excess osteoclast activity is found in many bone metabolic diseases, and inhibiting osteoclast differentiation has proven to be an effective strategy. Here, we revealed that osteoclast precursors (pre-OCs) were more susceptible to thioredoxin reductase 1 (TXNRD1) inhibitors than bone marrow-derived monocytes (BMDMs) during receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis. Mechanistically, we found that nuclear factor of activated T-cells 1 (NFATc1) upregulated solute carrier family 7 member 11 (SLC7A11) expression through transcriptional regulation during RANKL-induced osteoclastogenesis. During TXNRD1 inhibition, the rate of intracellular disulfide reduction is significantly reduced. Increased cystine transport leads to increased cystine accumulation, which leads to increased cellular disulfide stress and disulfidptosis. We further demonstrated that SLC7A11 inhibitors and treatments that prevent disulphide accumulation could rescue this type of cell death, but not the ferroptosis inhibitors (DFO, Ferro-1), the ROS scavengers (Trolox, Tempol), the apoptosis inhibitor (Z-VAD), the necroptosis inhibitor (Nec-1), or the autophagy inhibitor (CQ). An in vivo study indicated that TXNRD1 inhibitors increased bone cystine content, reduced the number of osteoclasts, and alleviated bone loss in an ovariectomized (OVX) mouse model. Together, our findings demonstrate that NFATc1-mediated upregulation of SLC7A11 induces targetable metabolic sensitivity to TXNRD1 inhibitors during osteoclast differentiation. Moreover, we innovatively suggest that TXNRD1 inhibitors, a classic drug for osteoclast-related diseases, selectively kill pre-OCs by inducing intracellular cystine accumulation and subsequent disulfidptosis.


Asunto(s)
Osteoclastos , Tiorredoxina Reductasa 1 , Ratones , Animales , Osteoclastos/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Cistina , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/farmacología , Regulación de la Expresión Génica , Diferenciación Celular/genética
16.
Scand J Gastroenterol ; 58(9): 998-1008, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37017178

RESUMEN

BACKGROUND: Patients with liver cirrhosis are recommended ultrasonography screening for early detection of hepatocellular carcinoma to increase the chances of curative treatment. However, ultrasonography alone lacks in sensitivity. Adding plasma biomarkers may increase the detection rate. We performed a broad exploratory analysis to find new plasma proteins with potential applicability for HCC screening in patients with cirrhosis. METHODS: In a protein discovery cohort of 172 patients with cirrhosis or HCC, we screened for 481 proteins with suspension bead array or proximity extension assay. From these, 24 proteins were selected for further analysis in a protein verification cohort (n = 160), using ELISA, Luminex or an electrochemiluminescence platform. A cut-off model and a stepwise logistic regression model were used to find combinations of proteins with the best discriminatory performance between HCC and cirrhosis. RESULTS: Stepwise logistic regression revealed alpha-fetoprotein (AFP), decarboxy-prothrombin (DCP), thioredoxin reductase 1 (TXNRD1), and fibroblast growth factor 21 (FGF21) as the proteins with the best discriminatory performance between HCC and cirrhosis. Adding TXNRD1 to DCP and AFP increased the AUC from 0.844 to 0.878, and combining AFP, DCP and TXNRD1 with age and sex resulted in an AUC of 0.920. FGF21, however, did not further increase the performance when including age and sex. CONCLUSION: In the present study, TXNRD1 improves the sensitivity and specificity of AFP and DCP as HCC screening tools in patients with cirrhosis. We suggest that TXNRD1 should be validated in prospective settings as a new complementary HCC biomarker together with AFP and DCP.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Tiorredoxina Reductasa 1 , Humanos , alfa-Fetoproteínas/análisis , Biomarcadores , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico por imagen , Cirrosis Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico por imagen , Estudios Prospectivos , Precursores de Proteínas , Protrombina , Sensibilidad y Especificidad
17.
Biochem Pharmacol ; 210: 115487, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36893814

RESUMEN

Glioblastoma multiforme (GBM) is one of the most lethal malignant tumors in the human brain, with only a few chemotherapeutic drugs available after surgery. Nitrovin (difurazone) is widely used as an antibacterial growth promoter in livestock. Here, we reported that nitrovin might be a potential anticancer lead. Nitrovin showed significant cytotoxicity to a panel of cancer cell lines. Nitrovin induced cytoplasmic vacuolation, reactive oxygen species (ROS) generation, MAPK activation, and Alix inhibition but had no effect on caspase-3 cleavage and activity, suggesting paraptosis activation. Nitrovin-induced cell death of GBM cells was significantly reversed by cycloheximide (CHX), N-acetyl-l-cysteine (NAC), glutathione (GSH), and thioredoxin reductase 1 (TrxR1) overexpression. Vitamins C and E, inhibitors of pan-caspase, MAPKs, and endoplasmic reticulum (ER) stress failed to do so. Nitrovin-triggered cytoplasmic vacuolation was reversed by CHX, NAC, GSH, and TrxR1 overexpression but not by Alix overexpression. Furthermore, nitrovin interacted with TrxR1 and significantly inhibited its activity. In addition, nitrovin showed a significant anticancer effect in a zebrafish xenograft model, which was reversed by NAC. In conclusion, our results showed that nitrovin induced non-apoptotic and paraptosis-like cell death mediated by ROS through targeting TrxR1. Nitrovin might be a promising anticancer lead for further development.


Asunto(s)
Apoptosis , Tiorredoxina Reductasa 1 , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Nitrovin , Pez Cebra , Línea Celular Tumoral , Muerte Celular , Glutatión/metabolismo
18.
Biochem Biophys Res Commun ; 650: 117-122, 2023 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780763

RESUMEN

Thioredoxin reductase 1 (TrxR1) is considered as an important anti-cancer drug target, inhibition of which can induce reactive oxygen species (ROS)-mediated apoptosis of human cancer cells. Here, we developed and optimized a high-throughput screening (HTS) assay based on enzyme kinetics for the discovery of TrxR1 inhibitors. By utilizing this assay, we performed a HTS for 2500 compounds from an in-house library against TrxR1. We found that a vaccine preservative, thimerosal, strongly inhibited TrxR1 in a competitive and reversible manner with an IC50 of 24.08 ± 0.86 nM. In addition, we determined that thiomersal has an inhibitory effect on the proliferation of A549 lung cancer cell line, with a GI50 of 6.81 ± 0.09 µM, slightly more potent than auranofin (GI50 = 11.85 ± 0.56 µM). Furthermore, we showed by flow cytometer that thimerosal effectively increased the content of ROS in A549 cells. Therefore, our work provided a high-throughput screening assay to quickly and effectively discover TrxR1 inhibitors, identifying thiomersal as a novel TrxR1 inhibitor and chemical probe.


Asunto(s)
Neoplasias Pulmonares , Tiorredoxina Reductasa 1 , Humanos , Tiorredoxina Reductasa 1/metabolismo , Timerosal , Ensayos Analíticos de Alto Rendimiento , Especies Reactivas de Oxígeno/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Línea Celular Tumoral
19.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119436, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36754152

RESUMEN

Atherosclerosis is the main cause of cardiovascular disease, and fluid shear stress is a key factor regulating its occurrence and development. Oscillatory shear stress (Oss) is an important pro-atherosclerosis factor. Oss mainly occurs in areas that are susceptible to atherosclerosis, but the exact mechanism of atherosclerosis induction remains unclear. Therefore, starting from the atheroprone phenotype that Oss stimulates abnormal vascular endothelial cell proliferation, this study aimed to reveal the underlying mechanism of Oss-induced atherosclerosis formation and to identify new targets for the prevention and treatment of atherosclerosis. In this study, the gene encoding thioredoxin reductase 1 (TXNRD1), which is closely related to atherosclerosis development and cell proliferation, was screened by analyzing the transcriptome sequencing data of static and Oss-treated human aortic endothelial cells (HAECs). Moreover, this study successfully verified that TXNRD1 mRNA and protein were significantly upregulated in Oss-treated HAECs. Oss significantly promoted the proliferation, migration, and tube formation of HAECs, whereas TXNRD1 knockdown impaired the proliferation, migration, and tube formation of Oss-treated HAECs, and this process was mainly achieved via activation of the apoptosis pathway. To further clarify whether Oss-sensitive TXNRD1 affects the apoptosis rate and proliferative ability of HAECs by regulating the endothelial nitric oxide synthase (eNOS) pathway, we used NG-nitro-L-arginine methyl ester (L-NAME) to inhibit eNOS activity and nitric oxide (NO) production. L-NAME significantly reversed the promoting effect of TXNRD1 knockdown on Oss-treated HAEC apoptosis, and it also abolished the inhibitory effect of TXNRD1 knockdown on the proliferation and S + G2 phase cell mass of Oss-treated HAECs. In conclusion, this study showed that TXNRD1 knockdown inhibited the proliferation of HAECs exposed to Oss by activating the eNOS/apoptosis pathway, revealing that TXNRD1 is involved in the dysregulation of Oss-induced endothelial cell proliferation. These findings provide new directions and insights into the prevention and treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Óxido Nítrico Sintasa de Tipo III , Humanos , Apoptosis/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Proliferación Celular/genética , Células Endoteliales/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Tiorredoxina Reductasa 1/metabolismo
20.
J Appl Toxicol ; 43(8): 1148-1158, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36807289

RESUMEN

Thioredoxin reductase 1 (TrxR1) has emerged as an important target for anticancer drug development due to its overexpression in many human tumors including breast cancer. Due to the serious side effects of currently used commercial anticancer drugs, new natural compounds with very few side effects and high efficacy are of great importance in cancer treatment. Lichen secondary metabolites, known as natural compounds, have diverse biological properties, including antioxidant and anticancer activities. Herein, we aimed to determine the potential antiproliferative, antimigratory, and apoptotic effects of evernic acid, a lichen secondary metabolite, on breast cancer MCF-7 and MDA-MB-453 cell lines and afterward to investigate whether its anticancer effect is exerted by TrxR1-targeting. The cytotoxicity results indicated that evernic acid suppressed the proliferation of MCF-7 and MDA-MB-453 cells in a dose-dependent manner and the IC50 values were calculated as 33.79 and 121.40 µg/mL, respectively. Migration assay results revealed the notable antimigratory ability of evernic acid against both cell types. The expression of apoptotic markers Bcl2 associated X, apoptosis regulator, Bcl2 apoptosis regulator, and tumor protein p53 by quantitative real-time polymerase chain reaction and western blot analysis showed that evernic acid did not induce apoptosis in both cell lines, consistent with flow cytometry results. Evernic acid showed its anticancer effect via inhibiting TrxR1 enzyme activity rather than mRNA and protein expression levels in both cell lines. In conclusion, these findings suggest that evernic acid has the potential to be evaluated as a therapeutic agent in breast cancer treatment.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Tiorredoxina Reductasa 1/genética , Células MCF-7 , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...